GPvam - Maximum Likelihood Estimation of Multiple Membership Mixed Models Used in Value-Added Modeling
An EM algorithm, Karl et al. (2013) <doi:10.1016/j.csda.2012.10.004>, is used to estimate the generalized, variable, and complete persistence models, Mariano et al. (2010) <doi:10.3102/1076998609346967>. These are multiple-membership linear mixed models with teachers modeled as "G-side" effects and students modeled with either "G-side" or "R-side" effects.
Last updated 9 days ago
1.48 score 5 scripts 408 downloadsmvglmmRank - Multivariate Generalized Linear Mixed Models for Ranking Sports Teams
Maximum likelihood estimates are obtained via an EM algorithm with either a first-order or a fully exponential Laplace approximation as documented by Broatch and Karl (2018) <doi:10.48550/arXiv.1710.05284>, Karl, Yang, and Lohr (2014) <doi:10.1016/j.csda.2013.11.019>, and by Karl (2012) <doi:10.1515/1559-0410.1471>. Karl and Zimmerman <doi:10.1016/j.jspi.2020.06.004> use this package to illustrate how the home field effect estimator from a mixed model can be biased under nonrandom scheduling.
Last updated 2 years ago
1.34 score 2 stars 11 scripts 234 downloads