Package: SVEMnet 1.0.3

SVEMnet: Self-Validated Ensemble Models with Elastic Net Regression

Implements Self-Validated Ensemble Models (SVEM, Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) using Elastic Net regression via 'glmnet' (Friedman et al. <doi:10.18637/jss.v033.i01>). SVEM averages predictions from multiple models fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights. Also implements the randomized permutation whole model test for SVEM (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). Code for the whole model test was taken from the supplementary material of Karl (2024). Development of this package was assisted by 'GPT o1-preview' for code structure and documentation.

Authors:Andrew T. Karl [cre, aut]

SVEMnet_1.0.3.tar.gz
SVEMnet_1.0.3.zip(r-4.5)SVEMnet_1.0.3.zip(r-4.4)SVEMnet_1.0.3.zip(r-4.3)
SVEMnet_1.0.3.tgz(r-4.4-any)SVEMnet_1.0.3.tgz(r-4.3-any)
SVEMnet_1.0.3.tar.gz(r-4.5-noble)SVEMnet_1.0.3.tar.gz(r-4.4-noble)
SVEMnet_1.0.3.tgz(r-4.4-emscripten)SVEMnet_1.0.3.tgz(r-4.3-emscripten)
SVEMnet.pdf |SVEMnet.html
SVEMnet/json (API)

# Install 'SVEMnet' in R:
install.packages('SVEMnet', repos = c('https://akarl46556.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 exports 40 dependencies

Last updated 1 days agofrom:5ab0b39c4e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winOKNov 21 2024
R-4.5-linuxOKNov 21 2024
R-4.4-winOKNov 21 2024
R-4.4-macOKNov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:svem_significance_testSVEMnet

Dependencies:clicodetoolscolorspacefansifarverforeachgamlssgamlss.datagamlss.distggplot2glmnetgluegtableisobanditeratorslabelinglatticelhslifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppEigenrlangscalesshapesurvivaltibbleutf8vctrsviridisLitewithr